Computational Materials Science for Thin-Film Solar Cells: How to Increase Efficiency baixar mp3

Scientists and engineers in academic and industrial research experience a strong evolving discipline: Computational Materials Science. This discipline provides materials insights that are not readily achievable by experiments, and it offers the opportunity to design materials and composites “ab-initio”. This book presents the methods and the practical use of Computational Materials Science using two distinct examples: the development of optimized or alternative materials for CIGS (Copper-Indium-Gallium-di-Selenide) photovoltaics and the optimization of CIGS thin film solar cells for maximum efficiency. After a general introduction the theoretical background of the book is illustrated: The strategies and principles of High Performance Computing (HPC) for materials science are covered and rounded out by a number of examples for highly parallel computing. Next theory and working principles of solar cells are depicted with emphasis on CIGS. Finally the theory of the quantum mechanical simulations (Density Functional Theory, Monte Carlo simulations for canonical and grand-canonical ensembles, cluster expansions) and the software used for these purposes are presented. In the practical section of the book the simulation work for the various functional layers of the CIGS cell is described in detail: After general electronic structure calculations for the CIGS photo absorber light is shed on the role of the Indium/Gallium distribution as well as on the influence of vacancies in chalcopyrite structures. Base requirements for the buffer layer are defined and simulation results from a search for alternative (Cadmium-free) buffer compounds are presented. Experimental results for synthesized replacement materials complete this part of the work. The optimization of the system transparent conductive oxide (TCO) / contact grid for maximum overall cell efficiency is described. The charge transport through TCO/grid is modelled by a Finite Element Method and cell efficiencies are calculated considering ohmic as well as optical losses. The last section of the book outlines the simulation results implications on the optimization of thin film cell processing. Special emphasis is placed on the influence of process temperatures on film homogeneity and cell efficiency as well as on the requirements for substrate selection. The calculations are validated by experimental results.
MP3 é o tipo de arquivo usado para armazenar músicas ou audiolivros. Aqui está como isso funciona. Nos antigos formatos de música, como gravações LP ou cassetes, era usada a tecnologia analógica, na qual a música era salva como uma representação física ou magnética do som original. Os arquivos de CD ou MP3 são digitais, o que significa que a música é armazenada como números. Enquanto o CD usa um formato de alta resolução não comprimido, o objetivo do MP3 é comprimir o som, mantendo uma qualidade de som comparável a um CD. O MP3 usa compactação de dados com perdas ou, mais simplesmente, elimina informações de áudio para reduzir o tamanho do arquivo. Então, qual informação é descartada? Principalmente sons com freqüências que o ouvido humano não pode ouvir. Ou, se simultaneamente com sons mais suaves um som mais alto, o algoritmo os ignora. Essa técnica é chamada de codificação perceptual ou psicoacústica. Podemos conseguir uma redução de tamanho de 10 vezes. Uma composição de 33 megabytes em um CD pode ser compactada para cerca de 3 megabytes. Graças à taxa de bits, que é o número de bits por segundo, você pode criar dois arquivos MP3 diferentes com qualidade de som e tamanhos de arquivo diferentes a partir do mesmo arquivo de entrada. A taxa de transferência geralmente pode variar de 32 a 320 kilobits por segundo. Com uma taxa de transferência de dados maior, obtemos gravações de maior qualidade. E vice versa. Uma taxa de bits de 128 kbps é provavelmente a mais comum e geralmente dá a qualidade do som que você ouve no rádio. Vamos ver a estrutura do arquivo MP3. Um arquivo MP3 consiste em pequenos pedaços chamados quadros. Cada quadro contém um cabeçalho e um bloco de dados. O cabeçalho de MP3 começa com uma palavra de sincronização usada para determinar o início de um quadro válido e é acompanhada por informações como taxa de bits, frequência ou modo de canal. O bloco de dados MP3 contém informações de áudio atualizadas em termos de freqüências e amplitudes. A maioria dos arquivos MP3 também contém metadados ID3 que armazenam detalhes da faixa, como título, artista, gênero etc. E é isso. O que você acha? A perda de qualidade dos arquivos MP3 é menor ou você prefere formatos sem perdas como o FLAC? E agora você aprenderá a baixar e ler o livro Computational Materials Science for Thin-Film Solar Cells: How to Increase Efficiency em formato mp3. Por favor, note que os arquivos mp3 fornecem áudio sem texto apenas. Os arquivos podem ser baixados para um computador ou qualquer dispositivo que suporte a reprodução de mp3. Para começar, abra um navegador e acesse nosso site. Você pode usar a pesquisa para um livro ou autor específico. Quando encontrar o livro desejado, selecione Download. Os livros estão disponíveis em dois formatos de áudio: mp3 e daisy audio. Mp3 é o formato de áudio padrão. Se você quiser que o livro esteja em formato de áudio, você deve indicar isso em suas preferências. Agora você está pronto para encontrar e baixar livros em formato mp3! Encontre o livro que deseja ler fazendo uma pesquisa ou navegação, selecione "Áudio" no menu suspenso e selecione "Download" Computational Materials Science for Thin-Film Solar Cells: How to Increase Efficiency. Após fazer o download de um livro em formato mp3, você pode ouvir o livro em seu computador usando o media player incorporado ou transferir arquivos para um dispositivo compatível com mp3. Se você usa um dispositivo da Apple, pode usar o iTunes para transferir arquivos para o seu dispositivo. Caso contrário, conecte o dispositivo ao computador e copie o arquivo mp3 ou arquivos para o dispositivo de acordo com as recomendações do fabricante. Transferir arquivos para o seu dispositivo Apple é muito fácil! Conecte seu dispositivo ao seu computador e abra o iTunes. Crie uma pasta no iTunes na seção "Playlists". Para fazer isso, selecione “Nova pasta de lista de reprodução” no menu “Arquivo”. Nomeie sua nova pasta como algo como “Books mp3s”. Em seguida, crie uma nova lista de reprodução na nova pasta, selecionando "Nova lista de reprodução" no menu Arquivo. Chame a playlist do título do livro Computational Materials Science for Thin-Film Solar Cells: How to Increase Efficiency que você baixou. Repita este passo para cada cabeçalho carregado. Arraste a pasta com o livro de mp3 da pasta no seu computador para a lista de reprodução especificada no iTunes. Alguns audiolivros possuem vários arquivos ou capítulos. Certifique-se de selecionar todos os arquivos. Sincronize seu dispositivo. Certifique-se de que a lista de reprodução esteja configurada para sincronizar na guia Música. Agora você está pronto para ouvir o livro do livro.
  • Hans-Werner Schock Autor:
  • 3642242847 Isbn 10:
  • 978-3642242847 Isbn 13:
  • Capa dura Páginas de capa mole:
  • Springer; Edição: 1st ed. 2022 Publisher:
  • 15,5 x 23,6 cm Dimensões e tamanhos:
  • 15,5 x 23,6 cm Dimensões e tamanhos:
  • Inglês Idioma Computational Materials Science for Thin-Film Solar Cells: How to Increase Efficiency:

Escolha um formato:

Livros relacionados

Livros recentes